45 research outputs found

    TAMpering with Toll-like Receptor Signaling

    Get PDF
    Toll-like receptors (TLRs) provoke a profound inflammatory response during host defense and must be controlled in order to avoid autoimmune and inflammatory diseases. In this issue, Rothlin et al. (2007) uncover a complex negative feedback mechanism to limit TLR signaling involving the Tyro3/Axl/Mer (TAM) family of receptor tyrosine kinases, which induce expression of the inhibitory proteins SOCS1 and SOCS3

    Macrophage fumarate hydratase restrains mtRNA-mediated interferon production

    Get PDF
    Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-β production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses

    DNA Makes RNA Makes Innate Immunity

    Get PDF
    Microbial DNA in the cytosol induces production of interferon-β (IFN-β) and an innate immune response. Chiu et al. (2009) now implicate cytosolic DNA-dependent RNA polymerase III as the DNA sensor linking DNA release by pathogenic bacteria and viruses in the host cell cytosol to IFN-β production and innate immunity

    New insights into the regulation of TLR signaling

    Get PDF
    Toll-like receptor (TLR) activation is dictated by a number of factors including the ligand itself and the localization of the receptor, in terms of expression profile and subcellular localization and the signal transduction pathway that has been activated. Recent work into TLR signal transduction has revealed complex regulation at a number of different levels including regulation by phosphorylation, targeted degradation, and sequestration of signaling molecules. Here, we describe recent advances that have been made in our under- standing of how TLR signaling is regulated at the biochemical level

    Metabolic reprogramming in macrophage polarization

    Get PDF
    Studying the metabolism of immune cells in recent years has emphasized the tight link existing between the metabolic state and the phenotype of these cells. Macrophages in particular are a good example of this phenomenon. Whether the macrophage obtains its energy through glycolysis or through oxidative metabolism can give rise to different phenotypes. Classically activated or M1 macrophages are key players of the first line of defense against bacterial infections and are known to obtain energy through glycolysis. Alternatively activated or M2 macrophages on the other hand, are involved in tissue repair and wound healing and use oxidative metabolism to fuel their longer-term functions. Metabolic intermediates however, are not just a source of energy but can be directly implicated in a particular macrophage phenotype. In M1 macrophages, the Krebs cycle intermediate succinate regulates HIF1α, which is responsible for driving the sustained production of the pro-inflammatory cytokine IL1β. In M2 macrophages, the sedoheptulose kinase CARKL is critical for regulating the pentose phosphate pathway. The potential to target these events and impact on disease is an exciting prospect
    corecore